QoS Monitoring Data Set

From Scube-casestudies
Revision as of 14:31, 2 April 2012 by Leitner (talk | contribs)
Jump to: navigation, search

This page serves as an appendix to the short paper A Monitoring Data Set for Evaluating QoS-Aware Service-Based Systems, to appear at the 4th International Workshop on Principles of Engineering Service-Oriented Systems (http://www.s-cube-network.eu/pesos-2012). The paper describes a data set of monitoring data, which we envision to be used to evaluate upcoming work in the area of QoS and SLA prediction for composed services and service-based applications.

The data set has originally been used in the evaluation of a contribution to IEEE Transactions on Services Computing:

Leitner, P.; Hummer, W.; Dustdar, S.; , Cost-Based Optimization of Service Compositions IEEE Transactions on Services Computing , forthcoming. doi: 10.1109/TSC.2011.53 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6072201&isnumber=4629387

Description

This artifact is an extensive set of monitoring data, measured from a running sample service composition. The example application has been implemented using .NET Windows Communication Foundation (WCF) technology, and was deployed on a server running Windows 2007 SP2 (64 bit). The server machine was equipped with 2 2.99GHz Xeon X5450 processors and 32 GByte RAM. A graphical screen shot (in Windows Workflow Foundation notation) of the monitored service composition can be found here: http://www.infosys.tuwien.ac.at/prototypes/VRESCo/workflow.jpg.

Basic technology

The data set has been generated using Windows Workflow Foundation, Windows Communication Foundation and the VRESCo research prototype (see here: https://www.infosys.tuwien.ac.at/prototypes/VRESCo/). The data itself is formatted in the ARFF format of the WEKA machine learning toolkit (http://www.cs.waikato.ac.nz/ml/weka/arff.html), to ease analyzing the data with WEKA.

How to install

N/A

How to use

TODO

Download

http://www.infosys.tuwien.ac.at/staff/leitner/dataset.arff

Additional info

TODO

Related case study

N/A